

Overview Cu Run-5

Fulvia Pilat

Beam Experiments Meeting BNL, September 16-17 2004

Overview Run-5 - outline

- Cu RHIC parameters
- Cu Run goals and modes
- □ Luminosity development
- Possible luminosity limitations
- □ (New) Timeline
- □ Dry-Runs
- □ Improvements Run-5
- □ Open issues
- □ Beam Experiments

Cu Run-5 RHIC Parameters

Parameter	Injection	Transition	Store	Unit
Q	29	29	29	
m	58.603772735	58.603772735	58.603772735	GeV/c^2
W	10.302044	20.362485	99.069781	GeV/N
cp	11.193678	21.272375	99.995673	GeV/N
E	11.232263	21.292704	100.000000	GeV/N
$B\rho$	81.1137824	154.147977	724.607889	Tm
β	0.99656480	0.99904526	0.99995673	
γ	12.07486366	22.8900	107.501611	
η	-0.00495	0.0	0.00182	
ϵ_H (95%)	$\leq 10\pi$	$\leq 10\pi$	$\leq 10\pi$	mm mrad
ϵ_V (95%)	$\leq 10\pi$	$\leq 10\pi$	$\leq 10\pi$	mm mrad
h	360	360	360	
hf	28.05396013	28.12378671	28.14944534	MHz
$2\pi R$	3833.845181	3833.845181	3833.845181	m

Maximum intensity From injectors:

6 x 109 Cu ions/bunch

Goal at the end of 2 weeks injector set-up

3 X 10⁹ Cu ions/bunch (charge equivalent of ~1 x 10⁹ Au ions/bunch

Parameter	Injection	Store	Unit
No. of Bunches	60	60	
Bunch Spacing	213.874	213.148	ns
Ions/Bunch	6.0	6.0	10 ⁹
Bunch Area	0.180	0.180	eV s/N

From K.Gardner

Cu Run-5 goals

- □ High energy Cu-Cu collisions 200 GeV/u integrated delivered luminosity of 7 nb⁻¹
 - ~ 8 weeks (discussion later)
- Low energy Cu-Cu collisions 62.4 GeV/u ~2 weeks
- □ Injection energy Cu-Cu collisions 22.5 GeV/u
 - ~ 1 day

Luminosity development

Luminosity model

Minimum:

45 x 3x109 Cu ions

Maximum:

28 x 7x109 Cu ions

Lumi development over 8 week, then linear

Goal for Cu run 200GeV: Integrated delivered lumi of at least 7 nb⁻¹

At minimum (last year max operating performance) →~10 weeks

At geometrical mean → 8 weeks

Re-evaluate run plans depending on initial machine performance, and feasibility of:

- □ 2 weeks at 62.4 GeV
- □ 1 day at 22.5 GeV

Luminosity limitations

W. Fischer

- - Vacuum instabilities
 - Experimental background
 - → Use optimized bunch patterns
 - → Installation of NEG coated pipes in warm regions: total ~250m in Run 5
- Intrabeam scattering (→ IBS model results A. Fedotov)
 - Leads to luminosity lifetime of a few hours
 - → Fast refills needed to increase average luminosity
 - → Ultimately need cooling at full energy (stochastic, electron)
- □ Beam-Beam
 - → New working point
 - → Beam-beam diagnostics
- Instabilities
 - Potentially vulnerable near transition
 - → Chromaticity control on ramp, octupoles for transition crossing (transverse)
 Landau cavities (longitudinal)
 - → Transition diagnostics (WCM, tomography)

Emittance growth comparison

This if for emittance of 20 π

Low-emittance: 10 π , high-intensity: N=7*10⁹

Factor of 3 increase in emittance in 5 hours

Low-emittance: 10 π , high-intensity: N=7*10⁹

Luminosity is decreased by a factor 3.5

Low-emittance: 10 π , low-intensity: N=3*10⁹

Emittance is increased by factor 2.3

Low-emittance: 10π , low-intensity: N=3*10⁹

Luminosity is decreased by a factor 2.5

Run-5 new timeline

Cool-down to 80 K

RHIC PAC

Dry Run 1

Beam Ex Workshop

Injector test with Cu

NSRL run end

Dry Run 2

Start cool-down 80K to 4K

Injectors Cu set-up

Dry Run 3

Beam in blue ring

Beam in both rings

Set-up Cu in RHIC

Ramp-up (+ collisions overnight)

Cu Physics 200 GeV/u (+ luminosity)

Cu set-up+ physics at 62.4 GeV/u

Cu set-up+ physics at injection

P-P set-up

Physics with P-P

September 7 (started) on hold?re-cool?

September 8-10

September 7-10

September 16-17

September 18-19 (week-end)

October 1

October 4-8 (possibly 11-15?)

November 7

November 1-15

November 8-12

November 15

November 22

November 22- December 6

December 7 - 20

- ~ 8 weeks (estimate)
- ~ 2 weeks (estimate)
- ~ 1 day (estimate)

3 weeks

~10 weeks (estimate)

Run-5 FY05 timeline

Dry Run 1

Cu-1 ramp (setpoints)

Plan and list of accomplished tasks on

http://www.rhichome.bnl.gov/AP/RHIC2005

Main goals Dry Run 1:

- Test of copper ramp Cu1
- Operations tools
- □ RHIC applications, old and new
- AtR applications and systems
- Operational sequences (reflect status of controls)

Dry Run 2 (october 4-8 or october 11-15)

As in Dry Run 1, BPM system integration

Dry Run 3 (november 8-12)

As in Dry Run 1,2 + hardware tests (where appropriate) overall system integration test, beam ready check-list

Improvements for Run-5

- □ Fixed store length
- ZDC's under CAD control
- STAR magnet control
- Low intensity pulse interlock
- Decoupling on ramp (development needed)
- Orbit control at transition, BBA (development needed)
- Correction triplet roll 5 o'clock (correction check needed)
- Configuration control WEB pages
- □ FDAView databased fill parameter
- QLI reduction program
- Rework of all corrector PS
- □ 250 m total of NEG pipes

Improvements Run-5 con't

- Stochastic cooling system (development only)
- New vertical collimators
- □ Re-alignment
- BPM electronics into alcoves
- BPM new boards in IR8 IR6 IR10 IR4
- Improved high level, BPM and Orbit Managers, timing
- New BLM's at Q2 low beta and in AtR
- Upgraded/fixed IPM
- PLL application interface
- New WEB, operations file, backup file, database, Linux servers
- 10 new radiation hard FEC's

Open issues

The <u>extra month</u> allows more time for system and operations improvements:

- Ramp development, modification, maintenance
- □ Faster down-ramps
- Injection improvements: faster BPM data acquisition and automatic AGS field correction
- □ (some of) The List (injectors)
- AtR automatic orbit correction
- Sequencer errors handling

Beam Experiments

Even wearing now the hat of Run Coordinator...

I think that regular scheduling of beam ex is important

- Schedule very early studies that are more relevant to operations, I.e.
- □ ramp to 0.85-0.9 m (if that cannot be tried out during ramp-up)
- diagnostics improvements/ techniques (ex: Schottky)
- □ Development of 250 GeV PP ?
- Collaborative studies